Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 26(2): 436-450, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38258874

RESUMO

Cleaning products emit a range of volatile organic compounds (VOCs), including some which are hazardous or can undergo chemical transformations to generate harmful secondary pollutants. In recent years, "green" cleaners have become increasingly popular, with an implicit assumption that these are better for our health and/or the environment. However, there is no strong evidence to suggest that they are better for indoor air quality compared to regular products. In this study, the VOC composition of 10 regular and 13 green cleaners was examined by headspace analysis. Monoterpenes were the most prevalent VOCs, with average total monoterpene concentrations of 8.6 and 25.0 mg L-1 for regular and green cleaners, respectively. Speciated monoterpene emissions were applied to a detailed chemical model to investigate the indoor air chemistry following a typical cleaning event. Green cleaners generally emitted more monoterpenes than regular cleaners, resulting in larger increases in harmful secondary pollutant concentrations following use, such as formaldehyde (up to 7%) and PAN species (up to 6%). However, emissions of the most reactive monoterpenes (α-terpinene, terpinolene and α-phellandrene), were observed more frequently from regular cleaners, resulting in a disproportionately large impact on the concentrations of radical species and secondary pollutants that were formed after cleaning occurred.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Formaldeído/análise , Compostos Orgânicos Voláteis/análise , Monoterpenos
2.
Environ Sci Process Impacts ; 25(9): 1532-1548, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37609942

RESUMO

Domestic cooking is a source of indoor air pollutants, including volatile organic compounds (VOCs), which can impact on indoor air quality. However, the real-time VOC emissions from cooking are not well characterised, and similarly, the resulting secondary chemistry is poorly understood. Here, selected-ion flow-tube mass spectrometry (SIFT-MS) was used to monitor the real-time VOC emissions during the cooking of a scripted chicken and vegetable stir-fry meal, in a room scale, semi-realistic environment. The VOC emissions were dominated by alcohols (70% of total emission), but also contained a range of aldehydes (14%) and terpenes (5%), largely attributable to the heating of oil and the preparation and heating of spices, respectively. The direct cooking-related VOC emissions were then simulated using the Indoor Chemical Model in Python (INCHEM-Py), to investigate the resulting secondary chemistry. Modelling revealed that VOC concentrations were dominated by direct emissions, with only a small contribution from secondary products, though the secondary species were longer lived than the directly emitted species. Following cooking, hydroxyl radical concentrations reduced by 86%, while organic peroxy radical levels increased by over 700%, later forming secondary organic nitrates, peroxyacylnitrates (PANs) and formaldehyde. Monoterpene emissions were shown to drive the formation of secondary formaldehyde, albeit to produce relatively modest concentrations (average of 60 ppt). Sensitivity analysis of the simulation conditions revealed that increasing the outdoor concentrations of ozone and NOx species (2.9× and 9×, respectively) resulted in the greatest increase in secondary product formation indoors (≈400%, 200% and 600% increase in organic nitrates, PANs and formaldehyde production, respectively). Given the fact that climate change is likely to result in increased ozone concentrations in the future, and that increased window-opening in response to rising temperatures is also likely, higher concentrations of indoor oxidants are likely in homes in the future. This work, therefore, suggests that cooking could be a more important source of secondary pollutants indoors in the future.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Nitratos , Culinária , Formaldeído
3.
Artigo em Inglês | MEDLINE | ID: mdl-37297548

RESUMO

The speciation of volatile organic compounds (VOCs) emitted from personal care products (PCPs) is complex and contributes to poor air quality and health risks to users via the inhalation exposure pathway. Detailed VOC emission profiles were generated for 26 sunscreen products; consequently, variability was observed between products, even though they were all designed for the same purpose. Some were found to contain fragrance compounds not labelled on their ingredients list. Five contaminant VOCs were identified (benzene, toluene, ethylbenzene, o-xylene, and p-xylene); headspace sampling of an additional 18 randomly selected products indicated that ethanol originating from fossil petroleum was a potential source. The gas phase emission rates of the VOCs were quantified for 15 of the most commonly emitted species using SIFT-MS. A wide range of emission rates were observed between the products. Usage estimates were made based on the recommended dose per body surface area, for which the total mass of VOCs emitted from one full-body application dose was in the range of 1.49 × 103-4.52 × 103 mg and 1.35 × 102-4.11 × 102 mg for facial application (men aged 16+; children aged 2-4). Depending on age and sex, an estimated 9.8-30 mg of ethanol is inhaled from one facial application of sunscreen.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Humanos , Masculino , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Etanol , Exposição por Inalação , Protetores Solares , Compostos Orgânicos Voláteis/análise , Feminino , Pré-Escolar , Adolescente
4.
Environ Sci Technol ; 57(21): 8026-8034, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191998

RESUMO

There are widespread policy assumptions that the phase-out of gasoline and diesel internal combustion engines will over time lead to much reduced emissions of Volatile Organic Compounds (VOCs) from road transport and related fuels. However, the use of real-world emissions measurements from a new mobile air quality monitoring station demonstrated a large underestimation of alcohol-based species in road transport emissions inventories. Scaling of industry sales statistics enabled the discrepancy to be attributed to the use of ancillary solvent products such as screenwash and deicer which are not included in internationally applied vehicle emission methodologies. A fleet average nonfuel nonexhaust VOC emission factor of 58 ± 39 mg veh-1 km-1 was calculated for the missing source, which is greater than the total of all VOCs emitted from vehicle exhausts and their associated evaporative fuel losses. These emissions are independent of the vehicle energy/propulsion system and therefore applicable to all road vehicle types including those with battery-electric powertrains. In contrast to predictions, vehicle VOC emissions may actually increase given a predicted growth in total vehicle kilometers driven in a future electrified fleet and will undergo a complete VOC respeciation due to the source change.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Emissões de Veículos/análise , Poluição do Ar/análise , Gasolina/análise
5.
Sci Total Environ ; 875: 162621, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878292

RESUMO

The development of remote emission sensing techniques such as plume chasing and point sampling has progressed significantly and is providing new insight into vehicle emissions behaviour. However, the analysis of remote emission sensing data can be highly challenging and there is currently no standardised method available. In this study we present a single data processing approach to quantify vehicle exhaust emissions measured using a range of remote emission sensing techniques. The method uses rolling regression calculated over short time intervals to derive the characteristics of diluting plumes. We apply the method to high time-resolution plume chasing and point sampling data to quantify gaseous exhaust emission ratios from individual vehicles. Data from a series of vehicle emission characterisation experiments conducted under controlled conditions is used to demonstrate the potential of this approach. First, the method is validated through comparison with on-board emission measurements. Second, the ability of this approach to detect changes in NOx / CO2 ratios associated with aftertreatment system tampering and different engine operating conditions is shown. Third, the flexibility of the approach is demonstrated by varying the pollutants used as regression variables and quantifying the NO2 / NOx ratios for different vehicle types. A higher proportion of total NOx is emitted as NO2 when the selective catalytic reduction system of the measured heavy duty truck is tampered. In addition, the applicability of this approach to urban environments is illustrated using mobile measurements conducted in Milan, Italy in 2021. Emissions from local combustion sources are distinguished from a complex urban background and the spatiotemporal variability in emissions is shown. The mean NOx / CO2 ratio of 1.61 ppb/ppm is considered representative of the local vehicle fleet. It is envisaged that this approach can be used to quantify emissions from a range of mobile and stationary fuel combustion sources, including non-road vehicles, ships, trains, boilers and incinerators.

6.
Environ Pollut ; 318: 120927, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565909

RESUMO

Volatile organic compounds (VOCs) play an important role in urban air pollution, both as primary pollutants and through their contribution to the formation of secondary pollutants, such as tropospheric ozone and secondary organic aerosols. In this study, more than 30 VOC species were continuously monitored in the two most populous cities in Vietnam, namely Ho Chi Minh City (HCMC, September-October 2018 and March 2019) and Hanoi (March 2019). In parallel with ambient VOC sampling, grab sampling was used to target the most prevalent regional-specific emission sources and estimate their emission factors (EFs). Emission ratios (ERs) obtained from ambient sampling were compared between Vietnamese cities and other cities across the globe. No significant differences were observed between HCMC and Hanoi, suggesting the presence of similar sources. Moreover, a good global agreement was obtained in the spatial comparison within a factor of 2, with greater ER for aromatics and pentanes obtained in the Vietnamese cities. The detailed analysis of sources included the evaluation of EF from passenger cars, buses, trucks, motorcycles, 3-wheeled motorcycles, waste burning, and coal-burning emissions. Our comparisons between ambient and near-source concentration profiles show that road transport sources are the main contributors to VOC concentrations in Vietnamese cities. VOC emissions were calculated from measured EF and consumption data available in Hanoi and compared with those estimated by a global emission inventory (EDGAR v4.3.2). The total VOC emissions from the road transport sector estimated by the inventory do not agree with those calculated from our observations which showed higher total emissions by a factor of 3. Furthermore, the inventory misrepresented the VOCs speciation, mainly for isoprene, monoterpenes, aromatics, and oxygenated compounds. Accounting for these differences in regional air quality models would lead to improved predictions of their impacts and help to prioritise pollution reduction strategies in the region.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Cidades , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , População do Sudeste Asiático , Vietnã , Ozônio/análise , Poluentes Ambientais/análise , China , Emissões de Veículos/análise
7.
Indoor Air ; 32(1): e12948, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816489

RESUMO

Volatile organic compound (VOC) emissions from personal care products (PCPs) contribute to poor indoor air quality. Exposure to indoor VOCs is typically determined through ambient concentration measurements; however, for some PCPs the proximity of use to the nose and mouth may lead to disproportionately large inhaled doses. In this paper, we quantify emission factors for six common PCP ingredient VOCs (ethanol, 2-propanol, benzyl alcohol, 1,3-butanediol, t-butyl alcohol, and the grouping of monoterpenes as limonene) from 16 facial day-moisturizers using headspace analysis and selected ion flow-tube mass spectrometry. A wide range of emissions rates were observed across the range of products tested (e.g., ethanol 3.3-6.9 × 102  µg s-1  g[product]-1 , limonene 1.3 × 10-1 -4.1 × 10-1  µg s-1  g[product]-1 ). We use a mannequin head with reconstructed nose and mouth airways to sample VOCs from facial application at typical respiration volumes. A single facial application of moisturizer can lead to a much larger inhaled VOC dose than would be inhaled from typical indoor ambient air over 24 h (e.g., limonene up to ~×16 greater via facial application, ethanol up to ~×300). Emissions from facially applied PCPs typically decayed to background concentrations over periods ranging from 5 to 150 min.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Cosméticos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Cosméticos/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos Voláteis/análise
8.
Indoor Air ; 31(4): 1281-1291, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33615569

RESUMO

An increasing fraction of volatile organic compounds (VOC) emissions come from the domestic use of solvents, contained within myriad commonplace consumer products. Emission rates are often poorly characterized and depend significantly on individual behavior and specific product formulation and usage. Time-concentration profiles of volatile organic compounds (VOCs) arising from the use of a representative selection of personal care products (PCPs) during showering are generated, and person-to-person variability in emissions calculated. A panel of 18 participants used a standardized set of products, dosages, and application times during showering in a controlled indoor bathroom setting. Proton transfer mass spectrometry was used to measure the in-room VOC evolution of limonene (representing the sum of monoterpenes), benzyl alcohol, and ethanol. The release of VOCs had reproducible patterns between users, but noticeable variations in absolute peak concentrations, despite identical amounts of material being used. The amounts of VOC emitted to air for one showering activity were as follows: limonene (1.77 mg ± 42%), benzyl alcohol (1.07 mg ± 41%), and ethanol (0.33 mg ± 78%). Real-world emissions to air were between 1.3 and 11 times lower than bottom-up estimates based on dynamic headspace measurements of product emissions rates, likely a result of PCPs being washed away before VOC evaporation could occur.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Cosméticos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Produtos Domésticos , Humanos , Compostos Orgânicos Voláteis/análise
9.
Indoor Air ; 30(3): 459-472, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32034823

RESUMO

Volatile organic compounds (VOCs) emitted from personal care products (PCPs) can affect indoor air quality and outdoor air quality when ventilated. In this paper, we determine a set of simplified VOC species profiles and emission rates for a range of non-aerosol PCPs. These have been constructed from individual vapor analysis from 36 products available in the UK, using equilibrium headspace analysis with selected-ion flow-tube mass spectrometry (SIFT-MS). A simplified speciation profile is created based on the observations, comprising four alcohols, two cyclic volatile siloxanes, and monoterpenes (grouped as limonene). Estimates are made for individual unit-of-activity VOC emissions for dose-usage of shampoos, shower gel, conditioner, liquid foundation, and moisturizer. We use these values as inputs to the INdoor air Detailed Chemical Model (INDCM) and compare results against real-world case-study experimental data. Activity-based emissions are then scaled based on plausible usage patterns to estimate the potential scale of annual per-person emissions for each product type (eg, 2 g limonene person-1  yr-1 from shower gels). Annual emissions from non-aerosol PCPs for the UK are then calculated (decamethylcyclopentasiloxane 0.25 ktonne yr-1 and limonene 0.15 ktonne yr-1 ) and these compared with the UK National Atmospheric Emissions Inventory estimates for non-aerosol cosmetics and toiletries.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Cosméticos/análise , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , Produtos Domésticos
10.
Sci Total Environ ; 664: 771-779, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30763857

RESUMO

Conventional volatile organic compound (VOC) monitoring based on thermal desorption - gas chromatography-mass spectrometry (TD-GC-MS) or gas chromatography-flame ionization detector (TD-GC-FID) is relatively cumbersome and expensive. In this study commercial off the shelf low-cost and low-power photo-ionization detector (PID) sensors are used as simple detectors in VOC analysis systems based on GC, including a miniaturised GC × GC device with portable, low-cost, and low-energy-consumption features. PID sensors produce a voltage signal positively proportional to VOC concentration, which when incorporated into a TD-GC system gave limit of detection of 0.02 ppbV for isoprene. To test PID performance in real-world applications, PID sensors were deployed as (i) a second alternative detector in a GC-Quadruple Time Of Flight Mass spectrometry (GC-Q-TOF-MS), and (ii) the main detector in a compact two-dimensional gas chromatograph (GC × GC). PID sensors with 10.6 eV and 11.7 eV lamps were used to measure eight toxic chemicals including organic sulfide and organic phosphonates via GC; two species were ionized by a 10.6 eV lamp and four species by the 11.7 eV lamp. Commercially available low-cost PIDs designed for standalone could be straightforwardly and effectively re-used as detectors in compact GC × GC systems, in this work showing excellent VOC sensitivity, fast response and low operational demands compared to comparable field instruments based on GC-FID or MS.

11.
Faraday Discuss ; 200: 621-637, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28608899

RESUMO

Low cost air pollution sensors have substantial potential for atmospheric research and for the applied control of pollution in the urban environment, including more localized warnings to the public. The current generation of single-chemical gas sensors experience degrees of interference from other co-pollutants and have sensitivity to environmental factors such as temperature, wind speed and supply voltage. There are uncertainties introduced also because of sensor-to-sensor response variability, although this is less well reported. The sensitivity of Metal Oxide Sensors (MOS) to volatile organic compounds (VOCs) changed with relative humidity (RH) by up to a factor of five over the range of 19-90% RH and with an uncertainty in the correction of a factor of two at any given RH. The short-term (second to minute) stabilities of MOS and electrochemical CO sensor responses were reasonable. During more extended use, inter-sensor quantitative comparability was degraded due to unpredictable variability in individual sensor responses (to either measurand or interference or both) drifting over timescales of several hours to days. For timescales longer than a week identical sensors showed slow, often downwards, drifts in their responses which diverged across six CO sensors by up to 30% after two weeks. The measurement derived from the median sensor within clusters of 6, 8 and up to 21 sensors was evaluated against individual sensor performance and external reference values. The clustered approach maintained the cost competitiveness of a sensor device, but the median concentration from the ensemble of sensor signals largely eliminated the randomised hour-to-day response drift seen in individual sensors and excluded the effects of small numbers of poorly performing sensors that drifted significantly over longer time periods. The results demonstrate that for individual sensors to be optimally comparable to one another, and to reference instruments, they would likely require frequent calibration. The use of a cluster median value eliminates unpredictable medium term response changes, and other longer term outlier behaviours, extending the likely period needed between calibration and making a linear interpolation between calibrations more appropriate. Through the use of sensor clusters rather than individual sensors, existing low cost technologies could deliver significantly improved quality of observations.

12.
Faraday Discuss ; 200: 599-620, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28580967

RESUMO

Volatile organic compounds (VOCs) originate from a variety of sources, and play an intrinsic role in influencing air quality. Some VOCs, including benzene, are carcinogens and so directly affect human health, while others, such as isoprene, are very reactive in the atmosphere and play an important role in the formation of secondary pollutants such as ozone and particles. Here we report spatially-resolved measurements of the surface-to-atmosphere fluxes of VOCs across London and SE England made in 2013 and 2014. High-frequency 3-D wind velocities and VOC volume mixing ratios (made by proton transfer reaction - mass spectrometry) were obtained from a low-flying aircraft and used to calculate fluxes using the technique of eddy covariance. A footprint model was then used to quantify the flux contribution from the ground surface at spatial resolution of 100 m, averaged to 1 km. Measured fluxes of benzene over Greater London showed positive agreement with the UK's National Atmospheric Emissions Inventory, with the highest fluxes originating from central London. Comparison of MTBE and toluene fluxes suggest that petroleum evaporation is an important emission source of toluene in central London. Outside London, increased isoprene emissions were observed over wooded areas, at rates greater than those predicted by a UK regional application of the European Monitoring and Evaluation Programme model (EMEP4UK). This work demonstrates the applicability of the airborne eddy covariance method to the determination of anthropogenic and biogenic VOC fluxes and the possibility of validating emission inventories through measurements.

13.
J Sep Sci ; 40(3): 753-766, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27928898

RESUMO

Stir bar sorptive extraction is a powerful technique for the extraction and analysis of organic compounds in aqueous matrices. Carbonyl compounds are ubiquitous components in rainwater, however, it is a major challenge to accurately identify and sensitively quantify carbonyls from rainwater due to the complex matrix. A stir bar sorptive extraction technique was developed to efficiently extract carbonyls from aqueous samples following chemical derivatization by O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride. Several commercial stir bars in two sizes were used to simultaneously measure 29 carbonyls in aqueous samples with detection by gas chromatography with mass spectrometry. A 100 mL aqueous sample was extracted by stir bars and the analytes on stir bars were desorbed into a 2 mL solvent solution in an ultrasonic bath. The preconcentration Coefficient for different carbonyls varied between 30 and 45 times. The limits of detection of stir bar sorptive extraction with gas chromatography mass spectrometry for carbonyls (10-30 ng/L) were improved by ten times compared with other methods such as gas chromatography with electron capture detection and stir bar sorptive extraction with high-performance liquid chromatography and mass spectrometry. The technique was used to determine carbonyls in rainwater samples collected in York, UK, and 20 carbonyl species were quantified including glyoxal, methylglyoxal, isobutenal, 2-hydroxy ethanal.


Assuntos
Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos/análise , Chuva/química , Limite de Detecção , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise
14.
Elife ; 52016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27668515

RESUMO

Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).

15.
Faraday Discuss ; 189: 455-72, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27098421

RESUMO

To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct measurement of pollutant fluxes from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. Fluxes of NOx were measured using the eddy-covariance technique from an aircraft flying at low altitude over London. The highest fluxes were observed over central London, with lower fluxes measured in suburban areas. A footprint model was used to estimate the spatial area from which the measured emissions occurred. This allowed comparison of the flux measurements to the UK's National Atmospheric Emissions Inventory (NAEI) for NOx, with scaling factors used to account for the actual time of day, day of week and month of year of the measurement. The comparison suggests significant underestimation of NOx emissions in London by the NAEI, mainly due to its under-representation of real world road traffic emissions. A comparison was also carried out with an enhanced version of the inventory using real world driving emission factors and road measurement data taken from the London Atmospheric Emissions Inventory (LAEI). The measurement to inventory agreement was substantially improved using the enhanced version, showing the importance of fully accounting for road traffic, which is the dominant NOx emission source in London. In central London there was still an underestimation by the inventory of 30-40% compared with flux measurements, suggesting significant improvements are still required in the NOx emissions inventory.

16.
Faraday Discuss ; 189: 85-103, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27104223

RESUMO

Low cost pollution sensors have been widely publicized, in principle offering increased information on the distribution of air pollution and a democratization of air quality measurements to amateur users. We report a laboratory study of commonly-used electrochemical sensors and quantify a number of cross-interferences with other atmospheric chemicals, some of which become significant at typical suburban air pollution concentrations. We highlight that artefact signals from co-sampled pollutants such as CO2 can be greater than the electrochemical sensor signal generated by the measurand. We subsequently tested in ambient air, over a period of three weeks, twenty identical commercial sensor packages alongside standard measurements and report on the degree of agreement between references and sensors. We then explore potential experimental approaches to improve sensor performance, enhancing outputs from qualitative to quantitative, focusing on low cost VOC photoionization sensors. Careful signal handling, for example, was seen to improve limits of detection by one order of magnitude. The quantity, magnitude and complexity of analytical interferences that must be characterised to convert a signal into a quantitative observation, with known uncertainties, make standard individual parameter regression inappropriate. We show that one potential solution to this problem is the application of supervised machine learning approaches such as boosted regression trees and Gaussian processes emulation.

17.
Environ Sci Technol ; 47(19): 10947-54, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24004338

RESUMO

The reaction between gaseous ozone (O3) and aqueous iodide (I(-)) at the surface microlayer (SML) is believed to be a major chemical contributor to the oceanic dry deposition of O3 over open ocean waters and has also recently been shown to produce environmentally significant quantities of gaseous molecular iodine (I2). Here we investigate how this reaction is affected by the presence of dissolved organic carbon (DOC) of marine origin, using a heterogeneous flow reactor and detection of gaseous I2 by solvent trapping and UV/vis spectroscopy. Ozone deposition measurements over coastal seawater implied an O3 reactivity (λ) toward coastal marine DOC of ∼500 (420-580) s(-1), 2-5 times higher than that toward iodide at typical ocean concentrations (∼0.5-1 × 10(-7) M). We added varying amounts of highly concentrated DOC extracted from coastal seawater to I(-) solutions (1 × 10(-5) M) such that the relative reactivities of DOC and I(-) toward O3 (λDOC/λI) were in the expected range for natural seawater. The evolution of gaseous I2 and the loss of aqueous I(-) both reduced as DOC concentrations increased, with an overall suppression of I2 emissions of about a factor of 2 under conditions of λDOC/λI representative of open ocean waters (0.5-1). A kinetic model of the SML suggested that neither competition of DOC with I(-) for reaction with interfacial O3, nor direct loss of I2 and hypoiodous acid (HOI) through reaction with increasing quantities of DOC, can fully explain these results. We conclude that the suppression of I2 emissions by DOC is largely a physical effect arising from a decrease in the net transfer of I2 from the aqueous to gas phase, as suggested by recent laboratory studies.


Assuntos
Poluentes Atmosféricos/química , Carbono/química , Iodetos/química , Ozônio/química , Água do Mar/química , Ar , Iodo/química , Modelos Teóricos
18.
Food Addit Contam ; 22(6): 573-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16019832

RESUMO

This study aimed to assess oxytetracycline (OTC) residue levels in honey up to 12 weeks after treatment of honeybee colonies with two methods of application (in liquid sucrose and in powdered icing sugar). Significantly greater mortality was seen in the all stages of brood development for the treated colonies when compared with the controls. Samples of honey were extracted up to 12 weeks after treatment and analysed by HPLC following metal chelation with a limit of quantitation of 0.05 mg/kg. These data showed that the current method of application of Terramycin in liquid form results in very high residue levels in honey with residues of 3.7 mg/kg eight weeks after application. Further work is required to determine whether the levels can be further reduced by changes in the method of application whilst ensuring efficacy and minimizing the effects on brood.


Assuntos
Antibacterianos/análise , Resíduos de Drogas/análise , Contaminação de Alimentos/análise , Mel/análise , Oxitetraciclina/análise , Animais , Antibacterianos/administração & dosagem , Antibacterianos/toxicidade , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Infecções Bacterianas/veterinária , Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Cromatografia Líquida de Alta Pressão/métodos , Oxitetraciclina/administração & dosagem , Oxitetraciclina/toxicidade , Pós , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...